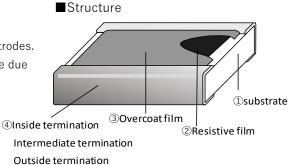
<u>Wide terminal type thick film chip resistors (RPW series)</u>


RPW18 (0612) RPW50 (1020) RPW1S (1225)

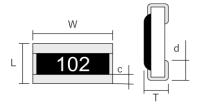
*(): Inch size


EOL (End of life) : RPW50(1020) RPW1S(1225)

Features

- The use of a wide terminal type significantly improves the reliability of solder joints compared to short-side electrodes.
- Improved heat dissipation compared to short terminal type due to the long side electrodes.
- \cdot RoHS qualified
- \cdot ELV qualified
- AEC-Q200 qualified
- AEC-Q200 qualified

■Part No. Explanation (Example)



*The first two numbers are significant numbers,

and the third number is the one of zeros "0" following to the first two numbers (multiple of 10).

*If there is a decimal point in resistance value, it is indicated by "R" and all numbers are significant numbers.

Dimensions

		L	W	Т	С	d
	RPW18	1.60 ± 0.15	3.20 ± 0.15	0.55 + 0.10 - 0.05	0.25 ± 0.15	0.35 ± 0.15
	RPW50	2.50±0.20	5.00±0.20	0.55±0.20	0.25±0.20	0.90±0.20
ly.	RPW1S	3.20±0.20	6.30±0.20	0.60±0.20	0.30±0.20	1.10±0.20

* External dimensions are for reference only. RPW Overcoat film color : Black

The resistance value is indicated by 3-digit numbers.

EOL (End of life) : RPW50(1020) (Unit: mm) RPW1S(1225)

Ratings

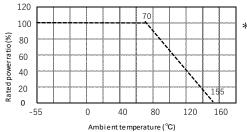
	Rated power	Limiting element voltage(*1)	Maximum overload voltage(*2)	Range of rated resistance	Tolerance on rated resistance	Category temperature range	Temperature Coefficient of Resistance(T.C.R)	
RPW18	0.75W	200V	400V	0.1Ω~1MΩ	J(±5%) F(±1%)	-55°C~+155°C	$0.1 \Omega \sim 1 M \Omega \pm 200 \times 10^{-6}$	³∕°C
RPW50	1W	200V	400V	0.1Ω~100kΩ	J(±5%) F(±1%)	-55°C~+155°C	$0.1 \Omega \sim 100 k\Omega \pm 200 \times 10^{-6}$	³∕°C
RPW1S	2W	_		0.075Ω~11kΩ	J(±5%) F(±1%)	-55°C~+155°C	$0.075 \Omega \sim 11 k\Omega \pm 200 \times 10^{-6}$	³∕°C

(*1) Rated voltage = $\sqrt{Rated power \times Resistance value}$

In the case of rated voltage over above limiting element voltage, limiting element voltage will be the maximum.

(*2) The applied voltage in short time overload test = $2.5 \times \text{rated voltage}$

In the case of the applied voltage in short time overload test over above maximum overload voltage, maximum overload voltage will be the maximum.


 \ast There are the supplementary information about rating on reference page.

* Temperature Coefficient of Resistance (T.C.R) is based on JIS C5201-1 6.2 between two points: 25°C and 125°C.

■ Specifications and test methods

Item	Specifications	Test method
Overload	$\pm (2\% + 0.05 \Omega)$	JIS C5201-1 8.1
Oventoau	$\pm (2\% \pm 0.05 \Omega)$	$2.5 \times Rated$ voltage, for 5 seconds
Bend strength of the	$\pm (1\% + 0.05 \Omega)$	JIS C5201-1 9.8
face plating	$\pm (1\% + 0.05 \Omega)$	Bending distance : 3mm
Resistance to	$\pm (1\% + 0.05 \Omega)$	JIS C5201-1 11.2
soldering heat	$\pm (1\% + 0.05 \Omega)$	260±5°C.10(sec.)
Coldorobility	Covered with more than 95%	JIS C5201-1 11.1
Solderability	Covered with more than 95%	245±3°C.(sec.)
Rapid change of	+(10(+0.050))	JIS C5201-1 10.1
temperature	$\pm (1\% + 0.05 \Omega)$	-55°C⇔+125°C,1000(times)
Loadlife in humidity	$\pm (3\% + 0.05 \Omega)$	60±2°C.90~95% R.H 1000h
Endurance at 70°C	+(20(+0.05))	JIS C5201-1 7.1
Endurance at 70°C	$\pm (3\% + 0.05 \Omega)$	70±2°C.1000h

Derating curve

- * Rated power of the resistor is the maximum power
 - which can be loaded continuously at the ambient temperature of 70 °C. For the ambient temperature above 70°C,

please use the item according to the load derating curve (dotted line) Please note that the component surface temperature

does not exceed operating temperature range.