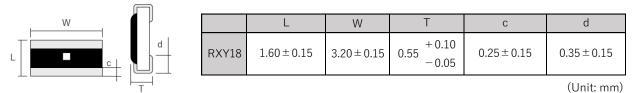

Anti-sulfurated · anti-surge · wide-terminal type thick film chip resistors RXY series

RXY18 (0612) *(): Inch size

Features

- The use of a wide terminal type significantly improves the reliability of solder joints compared to short-side electrodes.
- Improved heat dissipation compared to short terminal type due to the long side electrodes.
- Improved anti-surge characteristics
 compared to the conventional long-side electrode product (RPW18)
- The use of special inside termination contribute to high performance of anti-sulfuration.
- RoHS qualified
- \cdot ELV qualified
- AEC-Q200 qualified


■Part No. Explanation (Example)

*The first two numbers are significant numbers,

and the third one is the number of zeros "0" following to the first two numbers (multiple of 10).

Dimensions

* Externa' limensions are for reference only.

* RXC18 has no indication of resistance value.

Yellow ■ shows anti-sulfuration series. Overcoat film color : Black

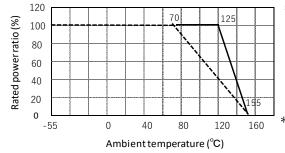
Ratings

	Rated power	Limiting element voltage(*1)	Maximum overload voltage(*2)	Range of rated resistance	Tolerance on rated resistance	Category temperature range		Temperature (Resistanc	
RXY18	0.75W	200V	400V	1.0Ω~1ΜΩ	J(±5%)	-55°C~+155°C		1Ω~1MΩ	±200×10 ⁻⁶ /°C
				1.0Ω~1ΜΩ	F(±1%)	-55°C~+155°C		1Ω~9.1Ω	
							Κ	10Ω~1MΩ	$\pm 100 \times 10^{-6}$ /°C

(*1) Rated voltage = $\sqrt{Rated power \times Resistance value}$

In the case of rated voltage over above limiting element voltage, limiting element voltage will be the maximum.

(*2) The applied voltage in short time overload test = 2.5 × rated voltage In the case of the applied voltage in short time overload test over above maximum overload voltage, maximum overload voltage will be the maximum.


* There are the supplementary information about rating on reference page.

* Temperature Coefficient of Resistance (T.C.R) is based on JIS C5201-1 6.2 between two points: 25°C and 125°C.

Item	Specifications	Test method			
Overload	$\pm (0.5\% + 0.05\Omega)$	JIS C5201-1 8.1			
Ovendad	± (0.5%+0.05Ω)	$2.5 \times Rated$ voltage, for 5 seconds			
Bend strength of the	$\pm (0.5\% + 0.05 \Omega)$	JIS C5201-1 9.8			
face plating	± (0.5%+0.05Ω)	Bending distance : 3mm			
Resistance to	$\pm (0.5\% + 0.05 \Omega)$	JIS C5201-1 11.2			
soldering heat	± (0.5%+0.05Ω)	260±5°C.10(sec.)			
Calderability	Covered with more than 95%	JIS C5201-1 11.1			
Solderability	Covered with more than 95%	245±3°C.(sec.)			
Rapid change of	$\pm (10(+0.05^{\circ}))$	JIS C5201-1 10.1			
temperature	$\pm (1\% + 0.05 \Omega)$	-55°C⇔+125°C,1000(times)			
Loadlife in humidity	$\pm (1\% + 0.05 \Omega)$	60±2°C.90~95% R.H 1000h			
Easterna at 70%		JIS C5201-1 7.1			
Endurance at 70°C	$\pm (1\% + 0.05 \Omega)$	70±2°C.1000h			

■Specifications and test methods

■Derating curve

* Rated power of the resistor is the maximum power which can be loaded continuously at the ambient temperature of 70 °C. For the ambient temperature above 70°C, please use according to the load derating curve (dotted line). Please note that the component surface temperature does not exceed operating temperature range.
* If the component temperature is below 155°C, the power rating can be used according to the load derating curve in the solid line.