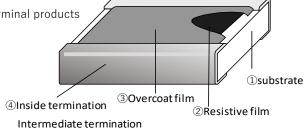
<u>High-power · wide-terminal type thick film chip resistor VCW series</u>

VCW10 (0508)

VCW18 (0612) *(): Inch size


Recommendation

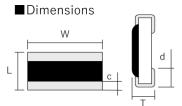
■ Features

■Structure

· Improved rated power compared to conventional wide terminal products 0508 size 0.8W, 0612 size 1.25W

- · RoHS qualified
- \cdot ELV qualified
- · AEC-Q200 qualified

Outside termination


*This is only a schematic drawing of the structure.

■ Part No. Explanation (Example)

V C W	1 0		Т	1 0 3	J
Product type	Rated power and Size	T.C.R	Packaging form	Nominal resistance value(*)	Resistance tolerance
VCW: Wide terminal type	10:0.8W,0508 18:1.25W,0612	T: ± 100 (10 ⁻⁶ /°C)	T : 4mm pitch taping ϕ 180 reel	The resistance value is indicated by 3-digit numbers.	J: ±5% F: ±1%

^{*}The first two numbers are significant numbers, and the third one is the number of zeros "0" following to the first two numbers (multiple of 10).

^{*}If there is a decimal point in resistance value, it is indicated by "R" and all numbers are significant numbers.

	L	W	Т	С	d	
VCW10	1.25 ± 0.15	2.00 ± 0.15	0.55 +0.10 -0.05	0.25 + 0.20 - 0.15	0.35 ± 0.15	
VCW18	1.60 ± 0.15	3.20 ± 0.15	0.55 + 0.10 - 0.05	0.20 ± 0.15	0.35 ± 0.15	

^{*} External dimensions are for reference only.

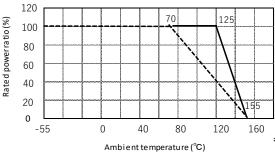
Overcoat film color: Black

(Unit: mm)

■ Ratings

	Ratedpower	Limiting element voltage(*1)	Maximum overload voltage(*2)	Range of rated resistance	Tolerance on rated resistance	Category temperature range	Temperature Coefficient of Resistance(T.C.R)		
VCW10	0.8W	200V	400V	1Ω~1ΜΩ	J(± 5%)	-55°C~+155°C		+25°C~+155°C	±200×10 ⁻⁶ /°C
VCVVIO	0.800	200 V	400 V		F(±1%)	-55°C~+155°C	Т	+25°C~+155°C	± 100 × 10 - 6/°C
VCW18	1.25W	200V	400V	0.1Ω∼1ΜΩ	J(±5%)	-55°C~+155°C		+25°C~+155°C	$\pm 200 \times 10^{-6}$ °C
VCVVIO	1.2300	2007	4007		F(±1%)	-55°C~+155°C		+25°C~+155°C	±200×10 ⁻⁶ /°C

(*1) Rated voltage = $\sqrt{Rated\ power \times Resistance\ value}$


In the case of rated voltage over above limiting element voltage, limiting element voltage will be the maximum.

- (*2) The applied voltage in short time overload test = $2.5 \times$ rated voltage In the case of the applied voltage in short time overload test over above maximum overload voltage, maximum overload voltage will be the maximum.
- *There are the supplementary information about rating on reference page.
- * Temperature Coefficient of Resistance (T.C.R) is based on JIS C5201-1 6.2 between two points: 25°C and 125°C.

■Specifications and test methods

Item	Specifications	Test method			
Overload	± (2%+0.05Ω)	JIS C5201-1 8.1			
Overload	± (2/0±0.03\frac{1}{2})	2.5 × Rated voltage, for 5 seconds			
Bend strength of the	± (1%+0.05Ω)	JIS C5201-1 9.8			
face plating	± (1%+0.03\2)	Bending distance : 3mm			
Resistance to	± (1%+0.05Ω)	JIS C5201-1 11.2			
soldering heat	± (1%+0.03\2)	260 ± 5°C.10(sec.)			
Solderability	Covered with more than 95%	JIS C5201-1 11.1			
Solderability	Covered with more than 95%	245 ± 3°C.(sec.)			
Rapid change of	± (1%+0.05Ω)	JIS C5201-1 10.1			
temperature	± (1%+0.03Ω)	-55°C ⇔ +125°C,1000(times)			
Loadlife in humidity	$\pm (3\% + 0.05 \Omega)$	60±2°C.90~95% R.H 1000h			
Endurance at 70°C	± (3%+0.05Ω)	JIS C5201-1 7.1			
Lituarance at 70 C	÷(5%+0.05Ω)	70 ± 2°C.1000h			

■ Derating curve

- *Rated power of the resistor is the maximum power which can be loaded continuously at the ambient temperature of 70 °C. For the ambient temperature above 70 °C, please use according to the load derating curve (dotted line). Please note that the component surface temperature does not exceed operating temperature range.
- * If the component temperature is below 155°C, the power rating can be used according to the load derating curve in the solid line.